DIRECTION
研究方向
——

1. 全球干旱半干旱地区的陆气相互作用


2. 海洋对半干旱区气候的影响


3. 青藏高原热源的变化

RESEARCH
代表性成果
——
代表性成果一: 发现了半干旱区强化增温现象,明确了人类活动的主导作用
指出在过去百年尺度上,全球陆地不同气候区的增温趋势存在显著差异,干旱半干旱区的增温幅度远高于湿润区,这种半干旱区的强化增温现象是辐射温度(与人类活动有关)和动力温度(与气候系统的内部振荡有关)共同作用的结果。动力温度扮演着温度变化背景场的作用,而辐射温度与原始温度变化一致,说明辐射温度主导了干旱半干旱区的强化增温现象。相关成果的首篇论文单篇引用率达200次左右。部分成果被联合国政府间气候变化专门委员会第五次评估报告(IPCC AR5)大篇幅引用。研究成果作为封面论文发表在Advances in Atmospheric Sciences上,并获评该期刊年度最优论文。
代表性成果二: 阐明了海洋活动对半干旱区气候年代际变化的调控机制。

指出北半球半干旱区冷季地表气温的年代际变化由典型海温低频变率模态(AMO、PDO、ENSO)协同调控。海温低频变率模态通过改变中高纬地区纬向海陆温差和经向温度梯度来调控西风带环流在纬向环流型与经向环流型之间转换。相关成果发表在Scientific ReportsClimate Dynamics等国际一流学术期刊。部分研究成果作为封面论文发表在《中国科学》杂志上,并获得教育部2021年自然科学二等奖(第一完成人)

代表性成果三: 揭示了全球变暖背景下北半球中纬度地区四个季节的演变特征
研究表明四季长度和起止时间的变化在未来将会进一步扩大;在最高排放情景下,到2100年,夏季将持续近半年,而冬季不到2个月。研究成果发表在Geophysical Research Letters和Journal of Climate上,相关成果受到包括世界经济论坛、美国华盛顿邮报、英国卫报等121家国际媒体的146条报道,被维基百科收入2021年气候变化纪事,被联合国减灾署列入降低灾害风险知识库。研究成果获甘肃省优秀硕士学位论文1篇。
PAPERS
论文成果
—— 英 文 文 章
65. Peng Y., He L.*,Wang X.,Jia J.,Huang B.,Li D.,Ji F.,Wang S.,Guan X. 2024The influence of water vapour on winter humidity-related extreme cold events in
China. DOI:10.1002/joc.8533.

China. Bulletin of the American Meteorological Society. DOI: 10.1175/BAMS-D-23-0199.1.
62. Gu T., Guan X.*, Huang J., Shen X., Huang X., Zhang G., Han D., Fu l, Nie J. 2023: The turning of ecological change in the Yellow River Basin. Hydrological
Processes. 37(12), e15055. DOI: 10.1002/hpy.15055.
CMIP6–DAMIP models. International Journal of Climatology. 43(8): 3892-3906. DOI: 10.1002/joc.8064.
60. Chen B*, Li D, Huang J., Wang Y., Jing Z., Yan W, Wang X, Song Z., Huang Z., Guan X., Dong X., Huang Y. 2023: Analysis of long-term trends in the vertical
distribution and transport paths of atmospheric aerosols in typical regions of China using 15 years of CALIOP data. Journal of Geophysical Research: Atmospheres.
DOI: 10.1029/2022JD038066.
58. Lian X., Huang J.*, Li H, He Y., Ou Y., Fu S., Zhao Y., Wang D., Wang R, Guan X., Zhang B. 2023: Heat waves accelerate the spread of infectious diseases.
57. Zhang G., He Y., Huang J.*, Fu L, Han D., Guan X., Zhang B. 2023: Divergent sensitivity of vegetation to aridity between drylands and humid regions. Science of
the Total Environmental. 884(2023), 163910. DOI: 10.1016/j.scitotenv.2023.163910.
56. Zhang G., Huang J.*, Liu X., Guan X., Wei Y, Ding L, Han D. 2023: The evolution of ecological security and its drivers in the Yellow River Basin. Environmental
Science and Pollution Research. DOI: 10.1007/s11356-023-25667-5.
55. Zhang B., He Y.*, Ren Y, Huang B, Peng Y., Wang S., Guan X. 2023: The influence of the precipitation recycling process on the shift to heavy precipitationover
the Tibetan Plateau in the summer. Frontiers in Earth Science. DOI: 10.3389/feart.2023.1078501.
54. He Y.*, Zhang B., Xia Z., Wang S., Guan X. 2023: Global Warming has Increased the Distance Traveled by Marine Heatwaves. Geophysical Research Letters. DOI:
10.1029/2022GL102032.
53. Guan X.*, Zeng X., Shi R, Chen H, Wei Z. 2023: Changes in snow parameterization over typical vegetation in the Northern Hemispher. Atmospheric and
Oceanic Science Letters. DOI: 10.1016/j.aosl.2022.100325.
52. Wang G., He Y.*, Zhang B., Wang X., Cheng S., Xie Y., Wang S., Guan X. 2023: Historical evaluation and projection of precipitation phase changes in the
cold season over the Tibetan Plateau based on CMIP6 multimodels. Atmospheric Research. 281(2023), 106494. DOI: 10.1016/j.atmosres.2022.106494.
51. Cao C., Guan X.*, Sun W., Guo S., Chen B. 2023: Changes of Extreme High Temperature by Global Warming in the Northern Hemisphere. Journal of
Applied Meteorology and Climatology. DOI: 10.1175/JAMC-D-22-0043.1.
50. Gao Z., Guan X.*, He B., Zhao L., Xie Y., He Y., Ji F. 2023: Impacts of the Tibetan Plateau on aridity change over the Northern Hemisphere. Atmospheric
Research. 281C, 106470. DOI: 10.1016/j.atmosres.2022.106470.
over inner East Asia. International Journal of Climatology. DOI: 10.1002/joc7951.
48. Guan X., Guo S., Huang J.*, Shen X., Fu L., Zhang G. 2022: Effect of seasonal snow on the start of growing season of typical vegetation in Northern
Hemisphere. Geography and Sustainability. DOI: 10.1016/j.geosus.2022.09.001.
47. Guan X., Gao Z., Huang J.*, Cao C., Zhu k., Wang J. 2022: Speeding extreme cold events under global warming. Environmental Research Letters. 17(8):
45. Chen B.*, Song Z., Huang J., Zhang P., Hu X., Zhang X., Guan X., et al. 2022: Estimation of Atmospheric PM10 Concentration in China Using an
Interpretable Deep Learning Model and Top-of-the-Atmosphere Reflectance Data From China’s New Generation Geostationary Meteorological Satellite, FY-
4A. Journal of Geophysical Research: Atmospheres. DOI: 10.1029/2021JD036393.
TOAR data and deep forest model in China. Atmospheric Research. 274, 106199. DOI: 10.1016/j.atmosres.2022.106199.
43. Guan X.*, Cao C., Zeng X., Sun W. 2022: Evidence of decreasing diurnal temperature range in eastern Northern Hemisphere. Environmental Research
Communications. 4, 031004. DOI: 10.1088/2515-7620/ac5e0a.
drylands. Atmospheric Research. DOI: 10.1016/j.atmosres.2022.106102.
40. Wang S., He Y.*, Hu S., Ji F., Wang B., Guan X., Sebastiano Piccolroaz. 2022: Enhanced Warming in Global Dryland Lakes and Its Drivers. Remote Sensing
. DOI: 10.3390/rs14010086.
39. Chen B., Huang Y., Huang J., Li D., Guan X., Ge J., Hu Z*. 2021: Using Lidar and Historical Similar Meteorological Fields to Evaluate the Impact of
Anthropogenic Control on Dust Weather During COVID-19. Frontiers in Environmental Science. 9, 806094. DOI: 10.3389/fenvs.2021.806094.
38. Guan X.*, Zhu K., Huang X., Zeng X., He Y. 2021: Precipitation Changes in Semi-arid Regions in East Asia Under Global Warming. Frontiers in Earth
Science. 9, 762348. DOI: 10.3389/feart.2021.762348.
37. Liu J., Guan X.*, Gao Z. et al. 2021: Inter-decadal variability of the heat source over the Tibetan Plateau. Climate Dynamics. 58(3-4): 729-739. DOI:
10.1007/s00382-021-05929-z.
36. Zhu K., Guan X. *, Huang J., Wang J., Guo S., Cao C. 2021: Precipitation over semi-arid regions of North Hemisphere affected by‍ Atlantic Multidecadal
Oscillation. Atmospheric Research. 262, 105801. DOI:10.1016/j.atmosres.2021.105801.
Climate. 34, 8181-8190. DOI: 10.1175/JCLI-D-20-0774.1.
34. He Y., W. Tian, J. Huang*, G. Wang, Y. Ren, H. Yan, H. Yu, Guan X., et al. 2021: The mechanism of increasing summer water vapor over the Tibetan
Plateau. Journal of Geophysical Research: Atmospheres. 126, e2020JD034166. DOI: 10.1029/2020JD034166.
33. Wang J., Y. Guan*, L. Wu, Guan X., et al. 2021: Changing lengths of the four seasons by global warming. Geophysical Research Letters. 48, 6.
e2020GL091753. DOI: 10.1029/2020GL091753.
32. Huang J.*, G. Zhang, Y. Zhang, Guan X., et al. 2020: Global desertification vulnerability to climate change and human activities. Land Degradation and
Development. 31(11), 1380–1391.. DOI: 10.1002/ldr.3556.
balance model. Atmospheric and Oceanic Science Letters. 13(1), 80-87. DOI:10.1080/16742834.2020.1696650.
30. Huang J.*, J. Ma, Guan X., Y. Li and Y. He. 2019: Progress in Semi-arid Climate Change Studies in China. Advances in Atmospheric Sciences. 36, 922-937.
DOI: 10.1007/s00376-018-8200-9.
Himalayas. Journal of Climate. DOI:10.1175/JCLI-D-18-0720.1.
Warming Slowdown. Earth and Space Science. 6, 387–397. DOI:10.1029/2018EA00044.
Geophysical Research: Atmospheres. 124, 8619–8630. DOI:10.1029/2019JD030294.
26. Luo W., Guan X.*, Y. Xie, et al. 2019: The key role of decadal modulated oscillation in recent cold phase. International Journal of Climatology. 39(15):
5761-5770. DOI:10.1002/joc.6186.
25. Guan X., J. Ma, J. Huang*, et al. 2019: Impact of oceans on climate change in drylands. Science China Earth Sciences. 62(6), 891-908. DOI:
10.1007/s11430-018-9317-8.
24. Chen S., N. Jiang, J. Huang*, Z. Zang, Guan X., et al. 2019: Estimations of indirect and direct anthropogenic dust emission at the global scale. Atmospheric
Environment. 200, 50-60.
23. Wei Y., H. Yu, J. Huang*, Y. He, B. Yang, Guan X., et al. 2018: Comparison of the Pacific Decadal Oscillation in climate model simulations and
observations. International Journal of Climatology. DOI:10.1002/joc.5355.
22. Chen S., N. Jiang, J. Huang*, X. Xu, H. Zhang, Z. Zang, K. Huang, X. Xu, Y. Wei, Guan X., et al. 2018: Quantifying contributions of natural and
anthropogenic dust emission from different climatic regions. Atmospheric Environment. 191, 94-104.
21. Guo R., Guan X.*, Y. He, Z. Gan, and H. Jin. 2018: Different roles of dynamic and thermodynamic effects in enhanced semi-arid warming. International
Journal of Climatology. 38(1): 13-22. DOI: 10.1002/joc.5155.
20. Ma J., Guan X.*, R. Guo, Z. Gan, and Y. Xie. 2017: Mechanism of non-appearance of hiatus in Tibetan Plateau. Scientific Reports. 7, 4421.
DOI:10.1038/s41598-017-04615-7.
19. Zhang Y., Guan X.*, H. Yu, Y. Xie, and H. Jin. 2017: Contributions of radiative factors to enhanced dryland warming over East Asia. Journal of Geophysical
Research: Atmospheres. 122(15), 7723-7736. DOI:10.1002/2017JD026506
18. Chen S., J. Huang*, N. Jiang, Z. Zang, Guan X., et al. 2017: Estimations of anthropogenic dust emissions at global scale from 2007 to 2010. Atmospheric
Chemistry and Physics. DOI: 10.5194/acp-2017-890.
17. Huang J., Y. Li, C. Fu*, F. Chen, Q. Fu, A. Dai, Masato Shinoda, Z. Ma, W. Guo, Z. Li, L. Zhang, Y. Liu, H. Yu, Y. He, Y. Xie, Guan X., et al. 2017: Dryland
climate change: recent progress and challenges. Reviews of Geophysics. DOI:10.1002/2016RG000550.
16. Guan X., J. Huang*, and R. Guo. 2017: Changes in Aridity in Response to the Global Warming Hiatus. Journal of Meteorological Research. 31(1), 117-125.
DOI: 10.1007/s13351-017-6038-1.
15. He Y., J. Huang*, Herman Henry Shugart, Guan X., et al. 2017: Unexpected Evergreen Expansion in the Siberian Forest under Warming Hiatus. Journal of
Climate. 30, 5021-5038. DOI: 10.1175/JCLI-D-16-0196.1.
14. Huang J.*, Y. Xie, Guan X., D. Li, and F. Ji. 2017: The dynamics of the warming hiatus over the Northern Hemisphere. Climate Dynamics. 48(1-2), 429-
446. DOI: 10.1007/s00382-016-3085-8.
13. Guan X., J. Huang*, Y. Zhang, Y. Xie, and J. Liu. 2016: The relationship between anthropogenic dust and population over global semi-arid regions.
Atmospheric Chemistry Physics.16(8), 5159-5169. DOI:10.5194/acp-2015-952.
12. Huang J.*, H. Yu, Guan X., G. Wang, and R. Guo. 2016: Accelerated dryland expansion under climate change. Nature Climate Change. 6(2), 66-171.
DOI:10.1038/NCLIMATE2837.
11. Guan X., J. Huang*, R.Guo, H. Yu, P. Lin, and Y. Zhang. 2015: Role of radiatively forced temperature changes in enhanced semi-arid warming in the cold
season over east Asia. Atmospheric Chemistry and Physics. 15(23), 13777-13786. DOI:10.5194/acp-15-13777-2015.
Hemisphere. Scientific Reports. 5, 12669. DOI:10.1038/srep12669.
9. Cheng S., Guan X., J. Huang*, F. Ji, and R. Guo. 2015: Long-term trend and variability of soil moisture over East Asia. Journal of Geophysical Research:
Atmospheres. 120(17), 8658-8670. DOI: 10.1002/2015JD023206.
8. Bradley O. Christoffersen*, NataliaRestrepo-Coupe, M Altaf Arain, Ian T. Baker, Bruno P. Cestaro, Phillippe Ciais, Joshua B. Fisher, David Galbraith, Guan
Agricultural and Forest Meteorology. 191, 33-50. DOI:10.1016/j.agrformet.2014.02.008.
satellite and surface measurements. Journal of Quantitative Spectroscopy and Radiative Transfer. 122, 64-71. DOI:10.1016/j.jqsrt.2012.11.028.
6. L. G. G. de Gonçalves*, J. S. Borak, M. H. Costa, S. R. Saleska, I. Baker, N. Restrepo-Coupe, M. N. Muza, B. Poulter, H. Verbeeck, J. B. Fisher, M. A.
Arain, P. Arkin, B. P. Cestaro, B. Christoffersen, D. Galbraith, Guan X., et al. 2013: Overview of the Large-Scale Biosphere-Atmosphere Experiment in
Amazonia Data Model Intercomparison Project (LBA-DMIP). Agricultural and Forest Meteorology. 182-183, 111-127. DOI:
10.1016/j.agrformet.2013.04.030.
5. C. von Randow*, M. Zeri, N. Restrepo-Coupe, M. N. Muza, L. G. G. de Gonçalves, M. H. Costa, A. C. Araujo, A. O. Manzi, H. R. da Rocha, S. R. Saleska,
M. A. Arain, I. T. Baker, B. P. Cestaro, B. Christoffersen, P. Ciaisl, J. B. Fisher, D. Galbraith, Guan, X., et al. 2013: Inter-annual variability of carbon and
145-155.DOI: 10.1016/j.agrformet.2013.05.015.
4. Huang J.*, Guan X., and F. Ji. 2012: Enhanced cold-season warming in semi-arid regions. Atmospheric Chemistry and Physics. 12(12), 5391-5398.
DOI:10.5194/acp-12-5391-2012.
3. Yang Z., X. Cai, G. Zhang, Ahmad A. Tavakoly, Q. Jin, Lisa H. Meyer, and Guan X., 2011: The Community Noah Land Surface Model with Multi-
Parameterization Options (Noah-MP): Technical Description. Center for Integrated Earth System Science, The University of Texas at Austin. DOI:
10.13140/RG.2.1.4925.5921.
the Loess Plateau. Advances in Atmospheric Sciences. 26(4), 692-700. DOI:10.1007/s00376-009-8198-0.
1. Chen Y.*, H. Bai, J. Huang, H. Zhang, J. Ge, Guan X., et al. 2008: Seasonal variability of cloud optical depth over northwestern China derived from
CERES/MODIS satellite measurements. Chinese Optics Letters. 6(6), 454-457. DOI:10.3788/COL20080606.0454.
—— 中 文 文 章
23. 管晓丹, 沈晓涵, 李梦雅, 黄建平*, 魏志敏, 马艳莉. 黄河流域城镇化对地下水的影响分析[J]. 大气科学学报, 2023, 46(01): 9-17. DOI:
10.13878/j.cnki.dqkxxb.20221223002..
22. 李梦迪, 戚友存*, 张哲, 管晓丹*. 基于雷达—雨量计降水融合方法提高极端降水监测能力[J]. 大气科学, 2022, 46(06): 1523-1542.
21. 谷同辉, 管晓丹*, 高照逵, 黄小倩, 郭书扬. 黄河流域蒸散发与气温和降水以及风速的相关性分析[J]. 气象与环境学报, 2022, 38(1): 48-56. DOI:
10.3969/j.issn.1673-503X.2022.01.007.
20. 刘婧晨, 管晓丹*, 曹陈宇, 甘泽文, 孔祥宁, 石瑞, 黄建平, 黄小倩. 青藏高原冬季热源多尺度变化及影响因素分析[J]. 兰州大学学报(自然科学版), 2021,
57(02): 207-214. DOI:10.13885/j.issn.0455-2059.2021.02.009.
19. 张镭, 黄建平*, 梁捷宁, 于海鹏, 管晓丹, 马金珠, 沈禹颖, 邓建明, 黄宁, 孟兴民, 王澄海, 李常斌, 牟翠翠, 巩杰, 张帆宇. 气候变化对黄河流域的影响及
应对措施 [J]. 科技导报, 2020, 38(17): 42-51.
18. 黄建平*, 张国龙, 于海鹏, 王闪闪, 管晓丹, 任钰. 黄河流域近40年气候变化的时空特征[J]. 水利学报, 2020, 51(09): 1048-1058. DOI:
10.13243/j.cnki.slxb.20200603.
17. 罗雯, 管晓丹*, 何永利, 郭瑞霞, 李兆麟, 曹陈宇. 全球增温减缓期间北半球暖季气温的变化特征[J]. 高原气象, 2020, 39(04): 673-682.
16. 管晓丹*, 马洁茹, 黄建平, 黄瑞新, 张镭, 马柱国. 海洋对干旱半干旱区气候变化的影响[J]. 中国科学, 2019, 49(6): 895-912.
15. 管晓丹*, 石瑞, 孔祥宁, 刘婧晨, 甘泽文, 马洁茹, 罗雯, 曹陈宇. 全球变化背景下半干旱区陆气机制研究综述[J]. 地球科学进展, 2018, 33(10): 995-1004.
14. 张国龙, 张廷瀚, 陈斌*, 张芝娟, 张艳婷, 管晓丹, 康丽泰. APEC期间京津冀地区污染物变化特征分析[J]. 大气与环境光学学报, 2017, 12(03): 184-194.
13. 张艳婷, 黄建平*, 管晓丹, 郭瑞霞. 全球人类活动对气候影响强度的定量评估[J]. 干旱气象, 2017, 35(02): 182-189.
12. 张艳婷, 陈斌*, 张廷瀚, 张芝娟, 张国龙, 管晓丹, 张北斗. 利用MODIS和MISR资料对APEC会议期间气溶胶时空分布特征的分析[J]. 大气与环境光学学
报, 2017, 12(02):136-147.
11. 程善俊, 黄建平*, 季明霞, 管晓丹, 郭瑞霞. 中国华北暖季土壤湿度的变化特征[J]. 干旱气象, 2015, 33(05): 723-731.
10. 郭瑞霞, 管晓丹*, 张艳婷. 我国荒漠化主要研究进展[J]. 干旱气象, 2015, 33(03): 505-513.
9. 冉津江, 季明霞, 黄建平, 齐玉磊, 李玥, 管晓丹. 60 变化. [J]. 兰州大学学报(自然科学版), 2014, 50(1):
46-53.
8. 冉津江, 季明霞*, 黄建平, 管晓丹, 齐玉磊, 何永利. 中国干旱半干旱地区的冷季快速增温[J]. 高原气象, 2014, 33(04): 947-956.
7. 管晓丹*, 程善俊, 郭瑞霞, 季明霞. 干旱半干旱区土壤湿度数值模拟研究进展[J]. 干旱气象, 2014, 32(01): 135-141.
6. 程善俊, 管晓丹*, 黄建平, 季明霞. 利用GLDAS资料分析黄土高原半干旱区土壤湿度对气候变化的响应[J]. 干旱气象, 2013, 31(04): 641-649.
5. 康林, 季明霞*, 黄建平, 管晓丹. 欧亚大气环流对中国北方春季沙尘天气的影响[J]. 中国沙漠, 2013, 33(05): 1453-1460.
4. 季飞*, 黄建平, 管晓丹, 冉津江. 北美和欧亚大陆冬季快速增温与地表干湿变化[J]. 气候变化研究进展, 2012, 8(06): 440-447.
3. 管晓丹*, 郭铌, 黄建平, 葛觐铭, 郑志海. 植被状态指数监测西北干旱的适用性分析[J]. 高原气象, 2008(05): 1046-1053.
2. 陈勇航, 白鸿涛, 黄建平*, 邱学兴, 亢燕铭, 管晓丹, 毛晓琴. 西北典型地域云对地气系统的辐射强迫研究[J]. 中国环境科学, 2008(02): 97-101.
1. 郭铌*, 管晓丹. 植被状况指数的改进及在西北干旱监测中的应用[J]. 地球科学进展, 2007(11): 1160-1168.
PROJECTS
科研项目
——
10. 国家自然科学基金专项项目——黄河流域水循环规律与水土过程耦合效应(项目骨干)
9. 国家自然科学基金优秀青年科学基金项目——全球变化背景下半干旱陆气机制研究(项目负责人 )
8. 国家自然科学基金集成项目——青藏高原地-气耦合过程和海洋对区域能量和水分循环及全球气候的协同影响(项目骨干)
7. 国家自然科学基金面上项目——增温停滞对我国干湿变化的影响(项目负责人)
6. 国家自然科学基金青年科学基金项目——利用观测资料改进半干旱区土壤湿度参数化方案的研究(项目负责人)
5. 中央高校面上项目——半干旱区植被对气候变化响应的数值模拟(项目骨干)
4. 国家自然科学基金委创新研究群体——干旱半干旱气候变化机理(项目骨干)
3. 教育部创新引智项目——半干旱气候变化创新引智基地(项目骨干)
2. 国家重大科学研究计划——全球典型干旱半干旱地区气候变化及其影响(项目骨干)
1. 中央高校优秀研究生创新项目——利用Noah-MP模拟西北半干旱地区的陆面过程(项目负责人)